Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 369
1.
Influenza Other Respir Viruses ; 18(4): e13288, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644564

BACKGROUND: Adults ≥ 65 years of age have suboptimal influenza vaccination responses compared to younger adults due to age-related immunosenescence. Two vaccines were specifically developed to enhance protection: MF59-adjuvanted trivalent influenza vaccine (aIIV3) and high-dose egg-based trivalent influenza vaccine (HD-IIV3e). METHODS: In a retrospective cohort study conducted using US electronic medical records linked to claims data during the 2019-2020 influenza season, we compared the relative vaccine effectiveness (rVE) of aIIV3 with HD-IIV3e and a standard-dose non-adjuvanted egg-based quadrivalent inactivated influenza vaccine (IIV4e) for the prevention of cardiorespiratory hospitalizations, including influenza hospitalizations. We evaluated outcomes in the "any" diagnosis position and the "admitting" position on the claim. A doubly robust methodology using inverse probability of treatment weighting and logistic regression was used to adjust for covariate imbalance. rVE was calculated as 100 * (1 - ORadjusted). RESULTS: The study included 4,299,594 adults ≥ 65 years of age who received aIIV3, HD-IIV3e, or IIV4e. Overall, aIIV3 was associated with lower proportions of cardiorespiratory hospitalizations with diagnoses in any position compared to HD-IIV3e (rVE = 3.9% [95% CI, 2.7-5.0]) or IIV4e (9.0% [95% CI, 7.7-10.4]). Specifically, aIIV3 was more effective compared with HD-IIV3e and IIV4e in preventing influenza hospitalizations (HD-IIV3e: 9.7% [95% CI, 1.9-17.0]; IIV4e: 25.3% [95% CI, 17.7-32.2]). Consistent trends were observed for admitting diagnoses. CONCLUSION: Relative to both HD-IIV3e and IIV4e, aIIV3 provided improved protection from cardiorespiratory or influenza hospitalizations.


Adjuvants, Immunologic , Hospitalization , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Aged , Hospitalization/statistics & numerical data , Male , Retrospective Studies , Female , Squalene/administration & dosage , Polysorbates/administration & dosage , Middle Aged , United States/epidemiology , Adjuvants, Immunologic/administration & dosage , Aged, 80 and over , Vaccine Efficacy , Seasons , Adult , Vaccination/statistics & numerical data
2.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Article En | MEDLINE | ID: mdl-34983950

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Adjuvants, Immunologic/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Nicotiana/metabolism , Pandemics/prevention & control , Polysorbates/adverse effects , SARS-CoV-2/immunology , Squalene/adverse effects , Vaccination/methods , Vaccines, Virus-Like Particle/adverse effects , alpha-Tocopherol/adverse effects , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Drug Combinations , Drug Compounding/methods , Immunity, Humoral , Macaca mulatta , Male , Polysorbates/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Squalene/administration & dosage , Treatment Outcome , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage
3.
J Med Virol ; 94(1): 119-130, 2022 01.
Article En | MEDLINE | ID: mdl-34403141

This study investigates the effect of the nanostructure of squalene in the form of microemulsion on COVID-19 patients. In this blinded clinical trial, a comparison was made between the efficacy of squalene treatment and controls. A total of 30 COVID-19 patients admitted to the emergency department, and the infection ward was equally allocated to case (n = 15) and control (n = 15) groups according to their age and underlying diseases. The baseline characteristics of subjects, including age, gender, time of treatment onset, underlying condition, white blood cells count, and lymphocyte count were similar (p < 0.05). Baseline laboratory tests and computed tomography (CT) scans were performed for the study groups. The treatment group received 5 mg of intravenous squalene twice a day and standard treatment for 6 days, while controls received only standard treatment. After 6 days of treatment, clinical and CT scan changes were evaluated and compared in intervention and control groups. The need for oxygen therapy (p = 0.020), 2 days of no fever (p = 0.025), cough alleviation (p = 0.010), and lung high-resolution computed tomography improvement (p = 0.033) were significantly different between cases and controls within 7 days of admission. No adverse effects were observed in the treatment group. Our data suggest that squalene could be considered as a potential treatment for COVID-19, and further studies are required to confirm the results.


COVID-19 Drug Treatment , Squalene/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Emulsions , Female , Humans , Male , Middle Aged , Plant Oils/chemistry , Squalene/administration & dosage , Squalene/adverse effects , Squalene/chemistry , Treatment Outcome
4.
Reprod Toxicol ; 107: 69-80, 2022 01.
Article En | MEDLINE | ID: mdl-34838689

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the coronavirus disease 2019 (COVID-19) has afflicted tens of millions of people in a worldwide pandemic. A recently developed recombinant Plant-Derived Virus-Like Particle Vaccine candidate for COVID-19 (CoVLP) formulated with AS03 has been shown to be well-tolerated and highly immunogenic in healthy adults. Since the target population for the vaccine includes women of childbearing potential, the objective of the study was to evaluate any untoward prenatal and postnatal effects of AS03-adjuvanted CoVLP administered intramuscularly to Sprague-Dawley female rats before cohabitation for mating (22 and 8 days prior) and during gestation (Gestation Days [GD] 6 and 19). The embryo-fetal development (EFD) cohort was subjected to cesarean on GD 21 and the pre/post-natal (PPN) cohort was allowed to naturally deliver. Effects of AS03-adjuvanted CoVLP was evaluated on pregnant rats, embryo-fetal development (EFD), during parturition, lactation and the development of the F1 offspring up to weaning Vaccination with AS03-adjuvanted CoVLP induced an antibody response in F0 females and anti-SARS-CoV-2 spike-specific maternal antibodies were detected in the offspring at the end of the gestation and lactation periods. Overall, there was no evidence of untoward effects of AS03-adjuvanted CoVLP on the fertility or reproductive performance of the vaccinated F0 females. There was no evidence of untoward effects on embryo-fetal development (including teratogenicity), or early (pre-weaning) development of the F1 offspring. These results support the acceptable safety profile of the AS03-adjuvanted CoVLP vaccine for administration to women of childbearing potential.


COVID-19 Vaccines , COVID-19/prevention & control , Embryonic Development/drug effects , Fertility/drug effects , Fetal Development/drug effects , Polysorbates/administration & dosage , Squalene/administration & dosage , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage , Animals , Animals, Newborn , Antibodies, Viral/blood , Drug Combinations , Female , Immunoglobulin G/blood , Maternal-Fetal Exchange , Pregnancy , Rats, Sprague-Dawley , Recombinant Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Nicotiana/genetics
5.
Front Immunol ; 12: 692151, 2021.
Article En | MEDLINE | ID: mdl-34335601

Combining variant antigens into a multivalent vaccine is a traditional approach used to provide broad coverage against antigenically variable pathogens, such as polio, human papilloma and influenza viruses. However, strategies for increasing the breadth of antibody coverage beyond the vaccine are not well understood, but may provide more anticipatory protection. Influenza virus hemagglutinin (HA) is a prototypic variant antigen. Vaccines that induce HA-specific neutralizing antibodies lose efficacy as amino acid substitutions accumulate in neutralizing epitopes during influenza virus evolution. Here we studied the effect of a potent combination adjuvant (CpG/MPLA/squalene-in-water emulsion) on the breadth and maturation of the antibody response to a representative variant of HA subtypes H1, H5 and H7. Using HA protein microarrays and antigen-specific B cell labelling, we show when administered individually, each HA elicits a cross-reactive antibody profile for multiple variants within the same subtype and other closely-related subtypes (homosubtypic and heterosubtypic cross-reactivity, respectively). Despite a capacity for each subtype to induce heterosubtypic cross-reactivity, broader coverage was elicited by simply combining the subtypes into a multivalent vaccine. Importantly, multiplexing did not compromise antibody avidity or affinity maturation to the individual HA constituents. The use of adjuvants to increase the breadth of antibody coverage beyond the vaccine antigens may help future-proof vaccines against newly-emerging variants.


Adjuvants, Immunologic/administration & dosage , Antigens, Viral/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins/immunology , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Vaccines, Combined/administration & dosage , Animals , Antibodies, Viral/blood , CpG Islands , Dogs , Female , Lipid A/administration & dosage , Lipid A/analogs & derivatives , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL , Oligodeoxyribonucleotides/administration & dosage , Orthomyxoviridae Infections/prevention & control , Squalene/administration & dosage , Vaccines, Synthetic/administration & dosage
6.
Fish Shellfish Immunol ; 115: 112-123, 2021 Aug.
Article En | MEDLINE | ID: mdl-34098068

Tachypleus amebocyte lysate (TAL) is crucial in medical testing, but its industry in China has been restricted due to the decline of horseshoe crab population in recent years. Exploring methods of enhancing immunity and rapid hemocytes proliferation is urgent for the industrial horseshoe crab culture. In this study, ß-glucan (G), peptidoglycan (P), and squalene (S) were injected to horseshoe crabs at two concentrations (5 and 10 mg/kg), in order to compare their effects on total hemocyte count (THC), reactive oxygen species (ROS), and non-specific immune enzyme activities. Results showed that the THC, superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were significantly increased by three immunostimulants at different points of time; ROS was significantly increased except at two squalene groups; lysozyme (LZM) and alkaline phosphatase (AKP) activity were increased except at low dose (5 mg/kg) squalene group; malondialdehyde (MDA) activity was decreased in all treatments; and hemocyanin concentration (HC) changed little during the experiment. At the 48th hour, THC, ROS, SOD, CAT, T-AOC, LZM, and AKP activities were significantly higher in the two peptidoglycan groups than those in the control group; the low dose ß-glucan and squalene groups showed significantly higher SOD and CAT, but their THC and AKP were not significantly different from those of the control group. In general, all three immunostimulants stimulated the hemolymph parameters of horseshoe crabs, notably, peptidoglycan could significantly increase the THC and enzyme activities, suggesting that peptidoglycan can be developed as an efficient immunostimulant for horseshoe crabs.


Adjuvants, Immunologic/administration & dosage , Cell Proliferation/drug effects , Hemocytes/drug effects , Horseshoe Crabs/immunology , Immunity, Innate/drug effects , Animals , Horseshoe Crabs/drug effects , Male , Peptidoglycan/administration & dosage , Squalene/administration & dosage , beta-Glucans/administration & dosage
7.
Biomed Pharmacother ; 141: 111799, 2021 Sep.
Article En | MEDLINE | ID: mdl-34098215

This study describes the assessment of mucosal adjuvant activity of a squalene-based nanoemulsion (SQ@NE) following intravaginal delivery in mice. After immunization, a high level of recruitment of CD11b/c+ granulocytes and F4/80+ macrophages was observed in the vaginal mucosal tissues of the mice immunized with a model protein ovalbumin (OVA) formulated with SQ@NE, and then downstream regulated the expression of MHC II and costimulatory molecules CD40 and CD86 on CD11c+ cells harvested from the associated draining lymph node. With respect to cytotoxic T lymphocyte immunity, the mice immunized with SQ@NE-formulated OVA elicited a high population of OVA-specific CD8+ cells in the spleen and increased the secretion of IFN-γ, IL-2 and IL-17 from OVA-restimulated splenocytes compared with those immunized with OVA alone. By studying in vivo fluorescence imaging and B-cell immunoassays, we discovered how SQ@NE prolongs the retention of antigen depots at the mucosal membrane of the immune inductive site and allows them to properly drive the production of antibodies. The data demonstrated that SQ@NE prolonged fluorescence-labeled OVA retention at the genital tract and augmented the production of OVA-specific IgG in sera and IgA in vaginal washes. These results indicate that SQ@NE is a promising vaginal adjuvant for the induction of both mucosal and systemic immune responses, a feature that provides implications for the development of a mucosal vaccine against genital infections and sexually transmitted diseases.


Mucous Membrane/drug effects , Mucous Membrane/immunology , Nanoparticles/administration & dosage , Squalene/administration & dosage , Vagina/drug effects , Vagina/immunology , Adjuvants, Immunologic/administration & dosage , Administration, Intravaginal , Animals , Emulsions , Female , Mice , Mice, Inbred BALB C , Ovalbumin/administration & dosage
8.
Immunobiology ; 226(2): 152057, 2021 03.
Article En | MEDLINE | ID: mdl-33545508

Visceral leishmaniasis (VL) is a neglected tropical disease caused by Leishmania donovani or Leishmania infantum. Currently, the patients are treated with chemotherapeutic drugs; however, their toxicity limits their use. It would be desirable to develop a vaccine against this infection. In this study, we assessed the efficacy of different vaccine formulations at variable time points. Heat-killed (HK) antigen of Leishmania donovani was adjuvanted with two adjuvants (AddaVax and Montanide ISA 201) and three immunizations at a gap of 2 weeks (wk) were given to BALB/c mice. After 2 weeks of the last booster, mice were given challenge infection and sacrificed before challenge and after 4wk, 8wk, and 12 wk post-challenge. Significant protective immunity was observed in all the immunized animals and it was indicated by the notable rise in delayed-type hypersensitivity (DTH) response, remarkably declined parasite burden, a significant increase in the levels of interferon-gamma (IFN-γ), interleukin-12, interleukin-17 (Th1 cytokines), and IgG2a in contrast to infected control mice. Montanide ISA 201 with HK antigen provided maximum protection followed by AddaVax with HK and then HK alone. These findings elaborate on the importance of the tested adjuvants in the vaccine formulations against murine visceral leishmaniasis.


Adjuvants, Vaccine/administration & dosage , Antigens, Protozoan/administration & dosage , Leishmania donovani , Leishmaniasis Vaccines/administration & dosage , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/prevention & control , Mannitol/analogs & derivatives , Oleic Acids/administration & dosage , Polysorbates/administration & dosage , Squalene/administration & dosage , Animals , Antibodies, Protozoan/blood , Cytokines/blood , Female , Hypersensitivity, Delayed/immunology , Immunoglobulin G/blood , Leishmaniasis, Visceral/parasitology , Male , Mannitol/administration & dosage , Mice, Inbred BALB C , Nitric Oxide/immunology , Reactive Oxygen Species/immunology , Spleen/cytology , Spleen/immunology
9.
Immunology ; 162(3): 314-327, 2021 03.
Article En | MEDLINE | ID: mdl-33283275

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that is potentially pathogenic in immunosuppressed individuals and pregnant females during primary infection. The HCMV envelope glycoprotein B (gB) facilitates viral entry into all cell types and induces a potent immune response. AD-2 epitope is a highly conserved linear neutralizing epitope of gB and a critical target for antibodies; however, only 50% of sero-positive individuals make IgG antibodies to this site and IgA responses have not been fully investigated. This study aimed to compare IgG and IgA responses against gB and the AD-2 epitope in naturally exposed individuals and those receiving a recombinant gB/MF59 adjuvant vaccine. Thus, vaccination of sero-positive individuals improved pre-existing gB-specific IgA and IgG levels and induced de novo gB-specific IgA and IgG responses in sero-negative recipients. Pre-existing AD-2 IgG and IgA responses were boosted with vaccination, but de novo AD-2 responses were not detected. Naturally exposed individuals had dominant IgG responses towards gB and AD-2 compared with weaker and variable IgA responses, although a significant IgA binding response to AD-2 was observed within human breastmilk samples. All antibodies binding AD-2 contained kappa light chains, whereas balanced kappa/lambda light chain usage was found for those binding to gB. V region-matched AD-2-specific recombinant IgG and IgA bound both to gB and to AD-2 and neutralized HCMV infection in vitro. Overall, these results indicate that although human IgG responses dominate, IgA class antibodies against AD-2 are a significant component of human milk, which may function to protect neonates from HCMV.


Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytomegalovirus Infections/prevention & control , Cytomegalovirus/immunology , Epitopes , Immunogenicity, Vaccine , Immunoglobulin A/blood , Viral Envelope Proteins/immunology , Viral Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antibody Specificity , Binding Sites, Antibody , Cell Line, Tumor , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Milk, Human/immunology , Milk, Human/virology , Polysorbates/administration & dosage , Protein Binding , Squalene/administration & dosage , Vaccination , Viral Envelope Proteins/metabolism , Viral Vaccines/immunology
10.
Mol Nutr Food Res ; 64(20): e2000354, 2020 10.
Article En | MEDLINE | ID: mdl-32918392

SCOPE: To investigate the effects of squalene, the main hydrocarbon present in extra virgin olive oil, on liver transcriptome in different animal models and to test the influence of sex on this action and its relationship with hepatic lipids. METHODS AND RESULTS: To this purpose, male C57BL/6J Apoe-deficient mice are fed a purified Western diet with or without squalene during 11 weeks and hepatic squalene content is assessed, so are hepatic lipids and lipid droplets. Hepatic transcriptomic changes are studied and confirmed by RT-qPCR. Dietary characteristics and influence of squalene doses are tested in Apoe-deficient on purified chow diets with or without squalene. These diets are also given to Apoa1 and wild-type mice on C57BL/6J background and to C57BL/6J xOla129 Apoe-deficient mice. Squalene supplementation increases its hepatic content without differences among sexes and hormonal status. The Cyp2b10 and Cyp2c55 gene expressions are significantly up-regulated by the squalene intake in all models, with independence of sex, sexual hormones, dietary fat content, genetic background and dose, and in Apoe-deficient mice consuming extra-virgin olive oil. CONCLUSION: Hepatic squalene increases the expression of these cytochromes and their changes in virgin olive oil diets may be due to their squalene content.


Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P450 Family 2/genetics , Liver/drug effects , Squalene/pharmacology , Steroid Hydroxylases/genetics , Animals , Apolipoprotein A-I/genetics , Apolipoproteins E/genetics , Castration , Cytochrome P-450 CYP2B6/genetics , Diet, Western , Dietary Supplements , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Lipids/blood , Liver/physiology , Male , Mice, Inbred C57BL , Squalene/administration & dosage
11.
Sci Adv ; 6(23): eaaz5466, 2020 06.
Article En | MEDLINE | ID: mdl-32548259

Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.


Drug Delivery Systems/methods , Endotoxemia/drug therapy , Nanoparticles/chemistry , Squalene/chemistry , Systemic Inflammatory Response Syndrome/drug therapy , Adenosine/administration & dosage , Adenosine/chemistry , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Endotoxemia/chemically induced , Female , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Squalene/administration & dosage , Systemic Inflammatory Response Syndrome/chemically induced , Treatment Outcome , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/chemistry
12.
Influenza Other Respir Viruses ; 14(5): 551-563, 2020 09.
Article En | MEDLINE | ID: mdl-32579785

BACKGROUND: We have developed an AS03-adjuvanted H5N1 influenza vaccine produced in an EB66® cell culture platform (KD-295). OBJECTIVES: In accordance with Japanese guidelines for development of pandemic prototype vaccines, the phase II study was conducted in a double-blind, randomized, parallel-group comparison study and the phase III study was conducted in an open-label, non-randomized, uncontrolled study. METHODS: Healthy adult volunteers aged 20 - 64 years enrolled in the phase II and III studies (N = 248 and N = 369) received KD-295 intramuscularly twice with a 21-day interval. After administration, immune response and adverse events were evaluated. In the phase II study, four different vaccine formulations were compared: MA (3.75 µg hemagglutinin [HA] antigen + AS03 adjuvant system), MB (3.75 µg HA + 1/2AS03), HA (7.5 µg HA + AS03), and HB (7.5 µg HA + 1/2AS03). In the phase III study, the MA formulation was further evaluated. RESULTS: In the phase II study, all four vaccine formulations were well-tolerated and no SAE related to vaccination were observed. The MA formulation was slightly more immunogenic and less reactogenic among the vaccine formulations. Therefore, the MA formulation was selected for the phase III study, and it was well-tolerated and no serious adverse drug reactions were observed. The vaccine fulfilled the three immunogenicity criteria described in the Japanese guidelines. CONCLUSIONS: These data indicate that the MA formulation of KD-295 was well-tolerated and highly immunogenic and it can be considered a useful pandemic and pre-pandemic influenza vaccine.


Cell Culture Techniques/methods , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Polysorbates/administration & dosage , Squalene/administration & dosage , alpha-Tocopherol/administration & dosage , Adult , Antibodies, Viral/blood , Double-Blind Method , Drug Combinations , Female , Humans , Influenza A Virus, H5N1 Subtype , Influenza Vaccines/administration & dosage , Injections, Intramuscular , Male , Middle Aged , Random Allocation , Squalene/immunology , Vaccination , Young Adult , alpha-Tocopherol/immunology
13.
J Allergy Clin Immunol ; 146(3): 652-666.e11, 2020 09.
Article En | MEDLINE | ID: mdl-32445838

BACKGROUND: Effector functions of IgG Abs are regulated by their Fc N-glycosylation pattern. IgG Fc glycans that lack galactose and terminal sialic acid residues correlate with the severity of inflammatory (auto)immune disorders and have also been linked to protection against viral infection and discussed in the context of vaccine-induced protection. In contrast, sialylated IgG Abs have shown immunosuppressive effects. OBJECTIVE: We sought to investigate IgG glycosylation programming during the germinal center (GC) reaction following immunization of mice with a foreign protein antigen and different adjuvants. METHODS: Mice were analyzed for GC T-cell, B-cell, and plasma cell responses, as well as for antigen-specific serum IgG subclass titers and Fc glycosylation patterns. RESULTS: Different adjuvants induce distinct IgG+ GC B-cell responses with specific transcriptomes and expression levels of the α2,6-sialyltransferase responsible for IgG sialylation that correspond to distinct serum IgG Fc glycosylation patterns. Low IgG Fc sialylation programming in GC B cells was overall highly dependent on the Foxp3- follicular helper T (TFH) cell-inducing cytokine IL-6, here in particular induced by water-in-oil adjuvants and Mycobacterium tuberculosis. Furthermore, low IgG Fc sialylation programming was dependent on adjuvants that induced IL-27 receptor-dependent IFN-γ+ TFH1 cells, IL-6/IL-23-dependent IL-17A+ TFH17 cells, and high ratios of TFH cells to Foxp3+ follicular regulatory T cells. Here, the 2 latter were dependent on M tuberculosis and its cord factor. CONCLUSION: This study's findings regarding adjuvant-dependent GC responses and IgG glycosylation programming may aid in the development of novel vaccination strategies to induce IgG Abs with both high affinity and defined Fc glycosylation patterns in the GC.


Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Germinal Center/immunology , Immunoglobulin G/immunology , Alum Compounds/administration & dosage , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cytokines/immunology , Female , Freund's Adjuvant/administration & dosage , Glycosylation , Lipopolysaccharides/administration & dosage , Mice, Inbred C57BL , Mice, Knockout , Mineral Oil/administration & dosage , Mycobacterium tuberculosis/immunology , Ovalbumin/administration & dosage , Polysorbates/administration & dosage , Squalene/administration & dosage , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Vaccination
14.
Pediatr Infect Dis J ; 39(8): e185-e191, 2020 08.
Article En | MEDLINE | ID: mdl-32404782

BACKGROUND: Vaccination against seasonal influenza is recommended for all children with a history of medical conditions placing them at increased risk of influenza-associated complications. The immunogenicity and efficacy of conventional influenza vaccines among young children are suboptimal; one strategy to enhance these is adjuvantation. We present immunogenicity and safety data for an MF59-adjuvanted quadrivalent influenza vaccine (aIIV4) in healthy children and those at a high risk of influenza-associated complications, based on the results of a recently completed phase III study. METHODS: Children 6 months to 5 years of age (N = 10,644) were enrolled. The study was conducted across northern hemisphere seasons 2013-2014 and 2014-2015. Subjects received either aIIV4 or a nonadjuvanted comparator influenza vaccine. Antibody responses were assessed by hemagglutination inhibition assay against vaccine and heterologous strains. Long-term antibody persistence was assessed (ClinicalTrials.gov: NCT01964989). RESULTS: aIIV4 induced significantly higher antibody titers than nonadjuvanted vaccine in high-risk subjects. aIIV4 antibody responses were of similar magnitude in high-risk and healthy subjects. Incidence of solicited local and systemic adverse events (AEs) was slightly higher in aIIV4 than nonadjuvanted vaccinees, in both the healthy and high-risk groups. Incidence of unsolicited AEs, serious AEs and AEs of special interest were similar for adjuvanted and nonadjuvanted vaccinees in the healthy and high-risk groups. CONCLUSION: aIIV4 was more immunogenic than nonadjuvanted vaccine in both the healthy and high-risk study groups. The reactogenicity and safety profiles of aIIV4 and the nonadjuvanted vaccine were acceptable and similar in 6-month- to 5-year-old high-risk and healthy children.


Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/blood , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Polysorbates/administration & dosage , Squalene/administration & dosage , Child, Preschool , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/complications , Male , Risk Factors , Seasons , Squalene/immunology
15.
Int J Pharm ; 582: 119345, 2020 May 30.
Article En | MEDLINE | ID: mdl-32311470

Despite the great advances accomplished in the treatment of pediatric cancers, recurrences and metastases still exacerbate prognosis in some aggressive solid tumors such as neuroblastoma and osteosarcoma. In view of the poor efficacy and toxicity of current chemotherapeutic treatments, we propose a single multitherapeutic nanotechnology-based strategy by co-assembling in the same nanodevice two amphiphilic antitumor agents: squalenoyl-gemcitabine and edelfosine. Homogeneous batches of nanoassemblies were easily formulated by the nanoprecipitation method. Their anticancer activity was tested in pediatric cancer cell lines and pharmacokinetic studies were performed in mice. In vitro assays revealed a synergistic effect when gemcitabine was co-administered with edelfosine. Squalenoyl-gemcitabine/edelfosine nanoassemblies were found to be capable of intracellular translocation in patient-derived metastatic pediatric osteosarcoma cells and showed a better antitumor profile than squalenoyl-gemcitabine nanoassemblies alone. The intravenous administration of this combinatorial nanomedicine in mice exhibited a controlled release behavior of gemcitabine and diminished edelfosine plasma peak concentrations. These findings make it a suitable pre-clinical candidate for childhood cancer therapy.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Bone Neoplasms/drug therapy , Nanoconjugates/therapeutic use , Nanoparticles , Neuroblastoma/drug therapy , Osteosarcoma/drug therapy , Phospholipid Ethers/pharmacology , Squalene/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/chemistry , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Compounding , Drug Synergism , Female , Inhibitory Concentration 50 , Injections, Intravenous , Mice, Nude , Nanoconjugates/administration & dosage , Nanoconjugates/chemistry , Neuroblastoma/metabolism , Neuroblastoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Phospholipid Ethers/administration & dosage , Phospholipid Ethers/chemistry , Phospholipid Ethers/pharmacokinetics , Squalene/administration & dosage , Squalene/chemistry , Squalene/pharmacokinetics , Squalene/therapeutic use
16.
Vaccine ; 38(22): 3881-3891, 2020 05 08.
Article En | MEDLINE | ID: mdl-32280039

To obtain an effective vaccine candidate against bovine viral diarrhea virus (BVDV) disease which causes great economical loss in cattle industries, recombinant Erns-E2 protein vaccine containing MF59 and CPG-ODN adjuvants was prepared and assessed in this study. The recombinant plasmid (pET32a-Erns-E2) was constructed and transformed into BL21 (DE3) cells to produce Erns-E2 protein. We immunized mice with the MF59-and CPG-ODN-adjuvanted recombinant Erns-E2 protein, E2 protein, or Erns protein, respectively. To evaluate immunogenicity and efficacy of a vaccine-adjuvant combination, mice were challenged with BVDV BJ175170 strain after immunization. All adjuvanted vaccines elicited detectable humoral and cellular immune responses, the BVDV-specific antibody titers as well as interleukin 4 (IL-4) levels in sera of mice immunized with the recombinant Erns-E2 protein were higher than in those of mice immunized with either the recombinant Erns or E2 protein. Besides, immunization with the Erns-E2 vaccines induced higher percentage of CD4+IFN-γ+, CD8+IFN-γ+ T cells and CD3+TNF-α+ T cells compared with the other vaccines. More protective efficacy against BVDV infection was acquired in the mice treated with the recombinant Erns-E2 protein, as shown by a reduction of viremia and slight pathological changes compared with both the control mice and the other vaccinated mice. Our findings suggest that the use of the recombinant Erns-E2 protein vaccine formulated with MF59 and CPG-ODN adjuvants enhances T cell responses and viral control, which warrants the Erns-E2 protein vaccine-adjuvant combination could be as a vaccine strategy to against BVDV.


Adjuvants, Immunologic/administration & dosage , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral , Cattle , Diarrhea Viruses, Bovine Viral/immunology , Mice , Oligodeoxyribonucleotides/administration & dosage , Polysorbates/administration & dosage , Recombinant Proteins/immunology , Squalene/administration & dosage
17.
Int J Pharm ; 581: 119282, 2020 May 15.
Article En | MEDLINE | ID: mdl-32259640

Native low-density lipoproteins (LDL) naturally accumulate at atherosclerotic lesions and are thought to be among the main drivers of atherosclerosis progression. Numerous nanoparticular systems making use of recombinant lipoproteins have been developed for targeting atherosclerotic plaque. These innovative formulations often require complicated purification and synthesis procedures which limit their eventual translation to the clinics. Recently, squalenoylation has appeared as a simple and efficient technique for targeting agents to endogenous lipoproteins through a bioconjugation approach. In this study, we have developed a fluorescent squalene bioconjugate to evaluate the biodistribution of squalene-based nanoparticles in an ApoE-/- model of atherosclerosis. By accumulating in LDL endogenous nanoparticles, the squalene bioconjugation could serve as an efficient targeting platform for atherosclerosis. Indeed, in this proof of concept, we show that our squalene-rhodamine (SQRho) nanoparticles, could accumulate in the aortas of atherosclerotic animals. Histological evaluation confirmed the presence of atherosclerotic lesions and the co-localization of SQRho bioconjugates at the lesion sites.


Atherosclerosis/drug therapy , Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Squalene/administration & dosage , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/metabolism , RAW 264.7 Cells , Rhodamines/administration & dosage , Rhodamines/metabolism , Squalene/metabolism
18.
Medicine (Baltimore) ; 99(7): e19095, 2020 Feb.
Article En | MEDLINE | ID: mdl-32049815

BACKGROUND: Influenza is a severe disease burden among all age groups. This study aimed to review the efficacy of inactivated influenza vaccines with MF59 adjuvant and non-adjuvanted inactivated influenza vaccines among all age groups against specific influenza vaccine strains. METHODS: Literature search of PubMed, Embase, Medline, OVID, and Cochrane Library Trials (CENTRAL) was implemented up to March 1, 2019. Homogeneity qualified studies were included forData were extracted such as study country location, demographic characteristics, and measure outcomes, and were analyzed by a random effect model and sensitivity analyses to identify heterogeneity. Risk of bias was evaluated using the Cochrane Risk of Bias Tool. RESULTS: We retrieved 1,021 publications and selected 31 studies for full review, including 17 trials for meta-analysis and 6 trials for qualitative synthesis. MF59-adjuvanted influenza vaccines demonstrated better immunogenicity against specific vaccine virus strains compared to non-adjuvanted influenza vaccine both in healthy adult group (RR = 2.10; 95% CI: 1.28-3.44) and the healthy aged (RR = 1.26; 95% CI: 1.10-1.44). CONCLUSION: The quality of evidence is moderate to high for seroconversion and seroprotection rates of influenza vaccine. MF59-adjuvanted influenza vaccines are superior to non-adjuvanted influenza vaccines to enhance immune responses of vaccination in healthy adults and older adults, and could be considered for routine use especially the monovalent prepandemic influenza vaccines.


Immunogenicity, Vaccine/drug effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Squalene/immunology , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Female , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/virology , Male , Middle Aged , Polysorbates/administration & dosage , Randomized Controlled Trials as Topic , Seroconversion/drug effects , Squalene/administration & dosage , Vaccines, Inactivated , Young Adult
19.
Vaccine ; 38(10): 2368-2377, 2020 02 28.
Article En | MEDLINE | ID: mdl-32035709

BACKGROUND: Seasonal influenza vaccination with a standard trivalent influenza vaccine (TIV) induces a modest, and cross-reactive, Fc functional antibody response in older adults. Recent improvements to influenza vaccines include a quadrivalent influenza vaccine (QIV) and a TIV adjuvanted with the squalene-based oil-in-water emulsion MF59. METHODS: Pre- and post-vaccination serum samples from older adults vaccinated with QIV (n = 27) and adjuvanted TIV (n = 44) were studied using hemagglutination inhibition (HAI) assays and dimeric Fc-gamma receptor IIIa binding ELISAs, as a surrogate of antibody-dependent cellular cytotoxicity (ADCC). RESULTS: We found that the unadjuvanted QIV elicited a stronger HAI response against the H1N1 vaccine virus than the adjuvanted TIV. Post-vaccination levels of HA-specific ADCC antibodies were similar for older adults vaccinated with QIV and adjuvanted TIV. The ADCC response to influenza vaccination was largely determined by pre-vaccination or baseline levels of these antibodies, with older adults with low baseline levels of ADCC activity demonstrating greater post-vaccination rises. CONCLUSIONS: In this cohort of community-dwelling older adults, the QIV was at least as good as the adjuvanted TIV in the induction of ADCC and HAI responses. Further studies on how these antibody responses translate to efficacy in preventing influenza infections are warranted.


Adjuvants, Immunologic/administration & dosage , Antibody Formation , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Influenza, Human , Aged , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H1N1 Subtype , Influenza Vaccines/classification , Influenza, Human/prevention & control , Polysorbates/administration & dosage , Receptors, IgG/immunology , South Australia , Squalene/administration & dosage , Vaccination
20.
Proc Natl Acad Sci U S A ; 117(2): 1119-1128, 2020 01 14.
Article En | MEDLINE | ID: mdl-31888983

Reprogramming the tumor microenvironment to increase immune-mediated responses is currently of intense interest. Patients with immune-infiltrated "hot" tumors demonstrate higher treatment response rates and improved survival. However, only the minority of tumors are hot, and a limited proportion of patients benefit from immunotherapies. Innovative approaches that make tumors hot can have immediate impact particularly if they repurpose drugs with additional cancer-unrelated benefits. The seasonal influenza vaccine is recommended for all persons over 6 mo without prohibitive contraindications, including most cancer patients. Here, we report that unadjuvanted seasonal influenza vaccination via intratumoral, but not intramuscular, injection converts "cold" tumors to hot, generates systemic CD8+ T cell-mediated antitumor immunity, and sensitizes resistant tumors to checkpoint blockade. Importantly, intratumoral vaccination also provides protection against subsequent active influenza virus lung infection. Surprisingly, a squalene-based adjuvanted vaccine maintains intratumoral regulatory B cells and fails to improve antitumor responses, even while protecting against active influenza virus lung infection. Adjuvant removal, B cell depletion, or IL-10 blockade recovers its antitumor effectiveness. Our findings propose that antipathogen vaccines may be utilized for both infection prevention and repurposing as a cancer immunotherapy.


Immunotherapy/methods , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Injections, Intralesional , Neoplasms/drug therapy , Neoplasms/immunology , Adjuvants, Immunologic/administration & dosage , Animals , B-Lymphocytes , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Immunity, Cellular , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human , Interleukin-10 , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Repressor Proteins/genetics , Seasons , Skin , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Squalene/administration & dosage , Tumor Microenvironment/drug effects , Vaccination
...